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Computation of an unsteady complex geometry �ow
using novel non-linear turbulence models
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SUMMARY

Non-linear zonal turbulence models are applied to an unsteady complex geometry �ow. These are
generally found to marginally improve predicted turbulence intensities. However, relative to linear mod-
els, convergence is mostly di�cult to achieve. Clipping of some non-linear Reynolds stress components
is required along with velocity �eld smoothing or alternative measures. Smoothing is naturally achieved
through multilevel convergence restriction operators. As a result of convergence di�culties, generally,
non-linear model computational costs detract from accuracy gains. For standard Reynolds stress model
results, again computational costs are prohibitive. Also, mean velocity pro�le data accuracies are found
worse than for a simple mixing length model. Of the non-linear models considered, the explicit alge-
braic stress showed greatest promise with respect to accuracy and stability. However, even this shows
around a 30% error in total (the sum of turbulence and unsteadiness) intensity. In strong contradiction
to measurements the non-linear and Reynolds models predict quasi-steady �ows. This is probably a key
reason for the total intensity under-predictions. Use of LES in a non-linear model context might help
remedy this modelling aspect. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: turbulence; large eddy simulation; Reynolds stress models; non-linear; explicit
algebraic stress model

1. INTRODUCTION

Franke and Rodi [1], Johansson, Davidson and Olsson [2], Przulj and Younis [3], Durbin
[4] and Bosch and Rodi [5] make unsteady Reynolds averaged Navier–Stokes (URANS) pre-
dictions for vortex shedding behind cylinders. These studies clearly demonstrate the unsteady
�ow modelling de�ciencies of linear eddy viscosity models. Notably, the dissipative standard
k–� model erroneously gives rise to steady �ow. Tucker and Pan [6] makes URANS computa-
tions for �ow in the complex congested Figure 1 geometry (an idealized electronics system).
The �ow is driven by two fans. A wide range of linear turbulence models are tried. These
give signi�cantly di�erent turbulent kinetic energy (k) values and hence eddy viscosities (�t).
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Figure 1. Schematic of idealized system considered.

The latter parameter, as would be expected, greatly impacts on predicted unsteadiness am-
plitudes. Based on the above linear URANS model poor performances, further outlined in
Reference [7], attention is being turned to non-linear models. These potentially can ac-
count for turbulence anisotropy more economically than full Reynolds stress models (RSM).
Tatsumi et al. [8] make non-linear URANS predictions for �ow over a backwards facing step.
Kimura and Hosoda [9], revisit the computation of �ow around square cylinders using an es-
sentially non-linear type model (see Reference [10]). Barakos and Drikakis [11] consider the
non-linear model prediction of airfoil shock induced oscillations. The above non-linear results
are quite inconclusive. Although, large eddy simulation (LES) and Reynolds stress mod-
els sometimes show greater potential than linear model URANS predictions (see References
[12, 13]) they are computationally expensive. Also, the latter (see References [14, 15]) are not
without empirical content and controversies regarding wall re�ection terms and adequacy when
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NON-LINEAR ZONAL TURBULENCE MODELS 981

modelling streamline curvature e�ects. Therefore, potentially computationally less expensive,
non-linear models are here further explored using the demanding Figure 1 geometry=�ow. The
dissipation rate (�) transport equation is generally considered to be a problematic element of
turbulence closures. Potential, complex geometry, tending to transitional Reynolds number
�ow modelling improvements, due to the � modi�cations of Yap [16] and Nishimura et al.
[12] are considered. The former is an � transport equation source term extension and the latter
a boundary condition variant. To more readily put non-linear eddy viscosity model perfor-
mances into context, one RSM prediction is presented and comparison made with LES data.
Zero equation models such as the mixing length are popular in electronics cooling design.
This is partly because electronics systems frequently comprise numerous channel like regions.
Therefore, as a baseline, zero and also (on potential computational e�ciency grounds) one
equation model results are presented. Although, predictions for other non-linear turbulence
stress relationships are considered [10, 17], results mostly focus on the classical relationship
of Speziale [18] in a zonal context. This is because of its k–l based LES [19, 20] and zonal
LES extension [21] potential.

2. NUMERICAL METHOD

Following Johansson et al. [2], and Bosch and Rodi [5] and based on experimental and
numerical evidence for the current �ow, the governing equations are presented in a phase
averaged ‡ tensor form. Conservation of momentum can be expressed as
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where 〈U 〉 is an averaged �uid velocity component, u′ is the averaged turbulence �uctuating
component, � the �uid density, � viscosity, 〈P〉 averaged static pressure, t time and x the
spatial co-ordinate. The corresponding continuity equation is as follows:
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=0 (2)

2.1. ‘Boussinesq’ approximations
The role of the turbulence model is to approximate Equation (1), 〈−�u′i u′j 〉, Reynolds stress
terms. To do this the following ‘Boussinesq’ approximations are considered:
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where Sij is the mean strain rate. In the above, n1 = 0 gives a standard linear Boussinesq
approximation for which �∗t =�t . For n1 = 1 the non-linear models are gained. The forms of
Ã, Ẽ and �∗t for the non-linear model of Speziale [18], the cubic and also the explicit algebraic

‡ Alternatively, it is also possible to view Equation (1) as being time averaged over a short period say T which is
much smaller than the time scale of the mean �ow variations, thus ensuring time scale separation.
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982 P. G. TUCKER ET AL.

stress can be found in Appendix A. In Equation (3) subscripts L and NL are used to represent
linear and non-linear contributions. Generally n0 = 1 but for the mixing length model n0 = 0.

2.2. Turbulence energy, dissipation and stress transport equations

When 〈k〉 is required, the following di�erential transport equation is used
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+
@〈Uj〉〈�〉
@xj
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where 〈�〉= 〈k〉, �k =�+�t=�k (�k is the di�usion Prandtl number for k), T1 =−〈 u′i u′j 〉@〈Ui〉=@xj
(turbulence production), T2 =−〈�〉 (the rate of dissipation of turbulence kinetic energy) and
T3 = 0. By setting 〈�〉= 〈�〉, ��=� + �t=�� (where �� is the di�usion Prandtl number for �),
T1 =−〈u′i u′j 〉@〈Ui〉=@xjC�1〈�〉=〈k〉, T2 =−C�2〈�〉2=〈k〉 and
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(where l=Cly) an 〈�〉 equation is gained. The �nal T3 term is an optional extension of the
standard equation derived by Yap [16]. It is usually most active just outside the viscous
sub-layer, a region which in a high-Reynolds number computation is covered with wall-
functions. For some, less general, modelling approaches, the rate of dissipation is related to
normal wall distances. The technique for evaluating these is described later. When 〈�〉= 〈u′i u′j 〉,
Equation (4) can also serve as a Reynolds stress transport equation. For stability, in this,
following Lien and Leschziner [22] turbulent and molecular di�usion can both be accounted
for through �u′i u′j =� + �t=�u′i u′j . Advantageously, the Reynolds stress transport equation has

an exact turbulence production representation T1 =−(〈u′i u′k〉@〈Uj〉=@xk + 〈u′ju′k〉@〈Ui〉=@xk). To
dissipate turbulence T2 = 2�ij〈�〉=3. T3 can now be considered to represent the problematic
pressure strain term (normally symbolically represented as �ij). Avoiding the need to model
wall re�ection terms, as used in the linear Gibson and Launder [23] type modelling, the
quadratic pressure strain model of Speziale et al. [24] is selected.
The various models used will now be outlined. The di�erences between linear and non-

linear models is in essence minor, being re�ected through the terms included in the Boussinesq
approximation embodied in Equation (3). Unless otherwise stated n0 = n1 = 1 in Equation (3)
giving non-linear models. The di�erent models will now be described. Each is given a di�erent
label. The subscripts l and h are used to identify low and high Reynolds number models,
respectively. Subscripts 1, 2 and 3 are also used to identify use of the models of [18] (nl1),
[10] (nl2) and [17] (nl3), respectively. The great majority of predictions presented here use
the non-linear model of Speziale [18] (nl1).

2.3. Mixing length model

For reference purposes a standard mixing length (mll) model is used. For this

�t =�〈l�〉2
[
2
@〈Ui〉
@xj
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]1=2
(6)
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where 〈l�〉=�y(1−e−〈y+〉=26) is a Van Driest damped mixing length. In this 〈y+〉=y√�〈�w〉=�;
〈�w〉 is the averaged wall shear stress and � the Von Karman constant. Outside the near wall
region 〈l�〉=�〈�〉 where 〈�〉 is an approximation to the boundary layer thickness. A di�erential
equation based approach is used to evaluate wall distance [6]. This approach gives nearest
and furthest wall distances and the average of these is used to estimate 〈�〉.

2.4. nl–k–l models

The non-linear k–l (nl–k–l) models are implemented through Wolfshtein’s [25] linear k–l
model. Equation (4) is solved for 〈�〉= 〈k〉, and 〈�〉 de�ned using

〈�〉= 〈k〉3=2
〈l�〉 (7)

where 〈l�〉=C�0y(1 − n2e−A�〈y+〉=C1=4� ) and 〈y+〉=y�〈k〉1=2C1=4� =�. The turbulent viscosity can
be expressed as

�t =�C�〈l�〉〈k〉1=2 (8)

where 〈l�〉=C�0y(1−n2 e−A�〈y+〉=C1=4� ). When n2 = 1, the length scales 〈l�〉 and 〈l�〉 have Wolf-
shtein’s damping functions giving a low Reynolds number non-linear model designated here
the nl–k–ll. Predictions are also made with n2 = 0 and computationally economical logarith-
mic wall functions (see Reference [26]). This, high Reynolds number, model is called here
the nl–k–lh model.

2.5. nl–k–� model

For the non-linear k–� model, Equation (4) is solved with 〈�〉= 〈k〉 and 〈�〉 and the turbulent
viscosity found using

�t =�C�
〈k〉2
〈�〉 (9)

For results presented, near walls one of the following is applied:

(I) the standard logarithmic wall functions [26] (nl–k–�h);
(II) the de-sensitized � boundary condition of Nishimura et al. [12];
(III) the near wall modelling modifying source term of Yap [16] and
(IV) simpli�ed low Reynolds number turbulence models.

2.6. Zonal models

With these, for 〈y+〉¿60 the nl–k–� method is used and for 〈y+〉¡60 the k–ll or nl–k–ll
models are applied. To connect the di�ering models at the 〈y+〉=60 interface the following
patching condition is required:

〈�〉= 〈k〉3=2=〈l�〉 (10)

Two non-linear approaches are tried. These are designated the nl–k–�h=k–ll and nl–k–�h=nl–
k–ll. The latter is fully non-linear. The former uses a linear near wall model (i.e. for
〈y+〉¡60; n1 = 0).
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As noted earlier, for all the models discussed above, their linear counterparts can be fully
recovered by setting n1 = 0 in Equation (3). These linear variants will be compared with later
and are identi�ed by omission of the nl pre�x.

2.7. Features speci�c to non-linear models

Non-linear equation (3) contributions are di�erentiated and directly incorporated into (1)
and (4). For the nl1 model following [18], for stability, velocities in the non-linear part of
the ‘Boussinesq’ approximation are smoothed. Here, an 18-point distance weighted averaging
is used. The averaging is performed using multigrid restriction operators (see Reference [7]).
Speziale’s model approximation often yields stresses that do not satisfy realizability needs.

For channel �ows (see Reference [27]) near walls, streamwise normal stresses u′1u
′
1 become

excessively high (40u2�). Also, u′2u
′
2 and u

′
3u

′
3 can become negative (ensuring the sum of the

three components is equal to k) with greater magnitudes than correct positive values. However,
Speziale’s original model (nl1) readily transfers into a low Reynolds number form [28] where,
fortunately, the aforementioned poor behaviour (in the greater part due to the Oldroyd deriva-
tives) mostly goes. Tests, not presented here, show the lack of high Reynolds number model
realizability (i.e. the negative and excessively high normal stresses) can partly give rise to
numerical instabilities. These are found especially severe for relatively low Reynolds number
�ows such as found in electronics (a strong focus of this paper). For these �ows, near wall y+

values tend to be low and as suggested by Mompean et al. [27], in this situation the realizabil-
ity problem noted above becomes worse with negative normal stress component magnitudes
increasing. Therefore, especially for the complex Figure 1 geometry clipping on non-linear
‘Boussinesq’ contributions appears warranted. In the current discretization process contribu-
tions to the turbulence equations are split into two parts. The non-linear (@〈−u′i u′j 〉NL=@xj)
contributions are treated as source terms. Linear contributions (@〈−u′i u′j 〉L=@xj) are distributed
between the di�usion and source terms, the 2〈k〉�ij=3 term going to the source. For all predic-
tions, an initially linear solution is produced and then the non-linear source term is included
in the computation. Two clipping approaches are tried. Either the magnitude of the non-linear
contribution to the total Reynolds stress component is limited to be less than some multiple
of the value arising from the linear part of (3), i.e.

|〈−u′i u′j 〉|NL = min[	〈−u′i u′j 〉L; |〈−u′i u′j 〉|NL] (11)

Alternatively, gradient contributions (e�ectively non-linear source term contributions) are lim-
ited, for each individual tensor component, in a similar way as follows:∣∣∣∣∣@〈−u

′
i u′j 〉NL
@xj

∣∣∣∣∣ = min
[
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(12)

The latter approach avoids large non-linear contribution gradient discontinuities. Therefore, this
approach is perhaps to be preferred. Incidentally, the use of clipping to enforce turbulence
model realizability is not new (see, for example, References [29, 30]). For the nl1–k–lh, nl1–
k–ll, nl1–k–�=k–l, nl1–k–�=nl1–k–l and nl2–k–�h models clipping is based on 200, 20, 200,
100 and 100%, respectively, of linear model values. These values correspond to 	=2; 0:2; 2; 1
and 1 and are more motivated=based on stability rather than turbulence physics grounds. Of
all the non-linear models, the nl2 perhaps seemed the most stable and with care it is expected
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that clipping may not be required. For the cubic model clipping was not required. However,
to gain converged solutions non-linear terms had to be introduced very gradually in a staged
fashion. Also, on turbulence physics grounds C� was clipped with a maximum value of 0.09.
The following standard model constants are used: �k =1 (0.82 for RSM), ��=1:3, �u′i u′j =

0:82, A�=0:263, A�=0:016, C�0 = 2:4, C�1 = 1:44, C�2 = 1:92, C�0 = 2:4, C�=0:09, Cw =0:83,
Cl=2:55, �=0:41, E≈ 9:0. Other constant values speci�c to the di�erent non-linear models
can be found in Appendix A.

2.8. Turbulence intensities

The �ow to be studied is unsteady. Consequently, the measured instantaneous velocity u
is the sum of U (the time-averaged velocity component, i.e. not the total velocity) and
�uctuations due to turbulence u′ and also unsteadiness u′′ (i.e. u=U+u′+u′′ or u= 〈U 〉+u′).
Measurements of turbulence intensity to be compared with have not been corrected for the
e�ect of �ow unsteadiness. These intensities can be expressed as

T ′
i =

√
(u′ + u′′)2

U
(13)

Experimental data comparisons are made with predictions of Ti (where the periodic �uctuation
is �ltered out, i.e. only the modelled turbulence u′ is considered in Equation (13)) and T ′

i .

2.9. General program features

Generally, the �ow governing equations are solved using the NEAT �nite volume program
(see Reference [7]). Normal wall distances required in some turbulence models are calculated
using a novel di�erential equation based technique [32]. Mostly, a fully implicit time scheme
is used. Di�usion terms are treated in a second-order fashion. Generally, the second-order
central di�erence based CONDIF [31] convective term treatment is implemented. This involves
parameters such as Rx�=(@�=@x)+=(@�=@x)− where the ‘+’ and ‘−’ superscripts identify
gradients to the right and left of a central grid point. Variables Ry� and Rz� are de�ned
in a similar way to Rx�. If the � distribution is locally constant Ri�=0. In steep gradient
regions it can become high. Therefore, for numerical reasons, a limit is set on Ri� such
that 1=Rmax6R6Rmax. In Reference [31] it is proposed typically Rmax is between 4 and 10.
Examination of the CONDIF equations shows reducing Rmax corresponds to introducing false
di�usion. Indeed for Rmax =1 CONDIF becomes equivalent to �rst-order upwinding. A key
CONDIF aspect is that for Ri�¡0 (i.e. at �ow maxima and minima) �rst-order upwinding
is explicitly enforced. Generally, according to Runchal [31], for most �ows, Ri�¡0 at just a
small number of grid points.
For the ‘one-o�’ Reynolds stress model predictions, to save coding e�ort a commercial

program is used [33]. In this, the CONDIF option is not available and instead second-order
upwinding is implemented. Also, for nl2 and nl3 results, to aid convergence the hybrid (�rst-
order upwind for Peclet numbers over two) scheme is used.

2.10. Boundary conditions

Appropriate Dirichlet or di�erential boundary conditions are set depending on the �ow
direction. For example, at out�ow boundaries, the gradients of variables are set to zero in
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a second-order fashion and the total pressure �xed. The slotted grills 1–4 (see Figure 1)
are modelled using established loss coe�cients. Fans are treated using quadratic momentum
sources. Further boundary condition information can be found in Reference [6]. Of especial
relevance here, for the high Reynolds number k–� model, based on dimensional analysis the
following �rst o�-wall boundary condition is appropriate

〈�〉=C 〈k〉3=2
y

(14)

where in the standard model (see Reference [26])

C=
C3=4�
�

(15)

The above C is only really applicable for y+¿30. However, as noted earlier, for low Reynolds
number complex geometry �ows in can be di�cult to ensure �rst o�-wall grid nodes are po-
sitioned in accordance with the above y+ limitation. Therefore, Nishimura et al. [12] propose
the following direct numerical simulation (DNS) data �t based C expression.

C= max[0:19; 7:90(y+)−1:89] (16)

Performance of the above two (Equations (15) and (16)) boundary condition expressions is
compared later. For the RSM, Equation (4) is solved for k and � throughout the complete �ow
domain with � evaluated at boundary nodes using (14). Therefore, considering equilibrium and
a log based near wall pro�le at �rst o�-wall grid nodes

〈u′2
i; j〉=C〈k〉 (17)

where C=1:098; 0:247; 0:655;−0:255 depending on the set stress component.

2.11. Numerical details

Predictions are made using a base grid with about 0.4 million generally regular hexahedral
control volumes. These are constructed so that at �rst o�-wall grid nodes y+ave is around 2
and 15 for the low and high Reynolds number turbulence model predictions, respectively. To
check for grid independence a NEAT prediction is made on a DEC super scalar computer with
around 4 million control volumes (for details of this expensive simulation see Reference [34]).
It is attempted to keep the grid structures on the commercial and NEAT codes as similar as
possible. For stable and time step independent predictions, typically time steps of �t=0:001s
are used. However, for non-linear model stability, on average time-steps are generally 30%
lower than this value. The average cell Courant number is always less than 1× 10−2 and
often much lower than this. Generally, on average, non-linear model under-relaxation factor
values are just under half those used for linear models.
Where complex geometry predictions and measurements are spatially compared, percentage

errors are given. The following experimental data point summations are made

ErrorU =

∑
exp |�exp − �num|

U0
; ErrorTi =

∑
exp|�exp − �num|∑

exp|�exp|
(18)

where, U0 is the approximate average return �ow velocity for the system, obtained by in-
tegrating over velocity pro�les (U0≈ 1:5 m=s) and �exp corresponds to an experimental data
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point and �num a numerical value. Where numerical data points do not coincide exactly with
measurements a sti� quadratic spline interpolation is used.

3. RESULTS AND DISCUSSION

3.1. Temporal accuracy validation

To explore NEAT’s temporal accuracy the propagation of a subcritical (Re=500) Tollmien–
Schlichting (TS) wave in plane Poiseuille �ow is explored. Plate 1(a) shows x–y plane
CONDIF disturbance stream function contours with Rmax =5. As can be seen, the expected
cellular ‘structure’ appearance is correctly captured. Plates 2(b)–2(e) give CONDIF contours
of Rxu, Ryu, Rxv and Ryv, respectively. The signi�cant white coloured zones correspond to
negative Ri� �rst-order upwind regions. The colour extremes show where false di�usion is
introduced through the Rmax =5 limit. Figure 2 compares predicted and analytical x direction
variations of vertical velocity �uctuations (v′) at the channel centre line. Symbols represent
the Orr-Sommerfeld analytical solution. CONDIF second-order central di�erencing and up-
winding along with �rst-order upwinding and hybrid are represented by the lines. The results
con�rm the codes temporal accuracy, with the second-order central di�erencing and upwind
(which is used for the RSM prediction) schemes agreeing with the analytical solution. The
graph well illustrates the strong damping e�ect of �rst-order upwinding and hence hybrid.
Consequently, the CONDIF’s �rst-order upwind component is seen to have a clear accuracy
in�uence. However, its predictive accuracy is still signi�cantly better than that for the hybrid
scheme. Also, it is considered that the present case is perhaps not especially good for illus-
trating CONDIF performance. This is because, for such a simple geometry, Ri� is negative
or its magnitude high at quite a large percentage of grid points. This point is enforced by
Plate 2, instantaneous k–lh model, mid x–y plane plots. Frame (a) gives a velocity vector
plot. Frames (b)–(e) give CONDIF contours of Rxu; Ryu; Rxv and Ryv, respectively. As can
be seen the areas where �rst-order upwinding is used are relatively low.
It seems worth noting here that channel �ow predictions, similar to those considered for

the TS wave, involving SIMPLE, SIMPLEC, AVPI [7], PISO and a fractional step method

0 10 20 30
x

-0.001

0

0.001

v’

CD2
2nd Upwind
CONDIF
Upwind
Hybrid
Analytic

Figure 2. Comparison of various discretization schemes.
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Figure 3. Positions of velocity and turbulence intensity pro�les.

(for a higher channel �ow Reynolds number) show insigni�cant performance di�erences and
so the choice of SIMPLE seems justi�ed.

3.2. Non-linear term validation cases

To validate the newly added non-linear ‘Boussinesq’ terms, computations for some relatively
simple steady �ows are considered. Some of these are presented in Appendix B. The cases
considered involve fully developed two- and three-dimensional channel �ows and the separated
�ow over a backward facing step. For the two-dimensional channel �ow, comparison is made
with the Reynolds stress component measurements of Laufer [35]. All, the non-linear models
are found to give improved agreement. For the three-dimensional channel it is veri�ed that
Prandtl motions of the second kind are predicted, thus giving further con�dence that the
extensive non-linear terms are correctly coded. For the step case, the prediction of reattachment
lengths is considered. For non-linear models, improved agreement is found with the data of
Kim [36]. The above give con�dence in the implementation of the non-linear terms and now
the complex Figure 1 �ow system is considered.

3.3. Complex geometry results

Comparisons are made with LDA measurements having an estimated accuracy ±5% along the
lines=pro�les shown in Figure 3. The exact locations of pro�les 1–6 are: X=0:53, Y=0:73;
X=0:37, Y=0:73; X=0:41, Z=0:06; X=0:41, Z=0:10; X=0:37, Z=0:57 and X=0:41, Z=0:96,
respectively (X; Y and Z are dimensionless co-ordinates such that X =Y =Z =1 correspond
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Figure 4. Variation of unsteadiness amplitude with turbulent viscosity.

to the maximum extent of the system). Comparisons are also made with thermistor based
mean �ow temporal velocity variation measurements with a ±10% accuracy for six points
on pro�les 1–6 (see Reference [6]). For this complex geometry �ow, the older Van Driest
damping functions are not used. Instead, generally Wolfshtein’s are implemented. This is
because the Figure 1 geometry �ow has signi�cant areas of separation (see later). Hence, use
of the Van Driest function would seem a retrograde step.

3.4. Temporal velocity variations

The thermistor-based measurements show the average velocity unsteadiness amplitude is about
0:25m=s. Figure 4, is a plot of averaged, predicted amplitude against turbulent viscosity for the
di�erent turbulence models. The amplitudes are based on velocity time traces at the centre of
pro�les 1–6 shown in Figure 3. The turbulent viscosity is calculated from a volume average
over the complete domain. Open symbols represent linear turbulence model predictions, closed
nl1 non-linear and the full and dotted lines respective best �ts to these. Each symbol represents
a di�erent turbulence model. The horizontal �ne dashed line gives the measured average
amplitude and the coarse dashed the RSM result. As can be seen, linear model amplitudes vary
signi�cantly, decreasing with increasing �t . This has some consistency with the observation
of Brackenridge [37]. For the non-linear models, some linear momentum equation, Reynolds
stress components are not incorporated through di�usion terms. Consequently, the trend of
decreasing amplitude with increasing turbulent viscosity is no longer observed. Also, as with
the RSM, unsteadiness amplitudes are too small.
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Figure 5. Plots of mid x–y plane streamlines and horizontal velocity component
unsteadiness at: (a) t∗ ∼=0:125 and (b) t∗ ∼=0:25.

3.5. Flow structure

Figure 5, shows mid-axis x–y plane, k–ll model, instantaneous streamline and axial velocity
(@U=@t) contour plots at approximately t∗ ∼=0:125 and 0.25 corresponding to frames (a) and
(b), respectively (note the dimensionless time is expressed as a fraction of one complete
unsteadiness cycle). Plots suggest the major predicted unsteadiness source is separation arising
from Fan 1 rapidly turning the �ow through 180◦. This, at t∗ ∼=0:125 (Frame (a)) causes
massive x–y plane separation. At t∗ ∼=0:25 (Frame (b)) the vortex arising from separation
collapses. The collapse and regeneration of this vortex repeats exactly in time. For non-linear
nl1 solutions the �ow is either �xed in a separated or attached mode, the attached being
the preferred. More detailed plots exploring the above limit cycle behaviour can be found in
Reference [6].
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Figure 6. Plots of measured against predicted velocities for pro�les 1–6.

3.6. Velocity and intensity magnitude comparisons

Figure 6, plots measured against predicted velocities for pro�les 1–6. If agreement is perfect
the symbols should fall on the 45◦ reference line. Frame (a) gives mll and k–�h results, (b)
k–lh and nl1–k–lh, (c) k–ll and nl1–k–ll and (d) k–�=k–ll, nl1–k–�=k–ll and nl1–k–�=nl1–k–ll
results. Mixing length predictions are included for interest representing the simplest useful
engineering turbulence model. A key point is that most measured points tend to be posi-
tioned under the line, i.e. velocities returned by the di�erent models are low. The percent-
age error (velocity and intensity) for each Figure 6 pro�le and model is summarized in
Table I. Smagorinsky model based LES data of Chung et al. [38] is also included along
with the RSM data. The average velocity pro�le error for the di�erent models is around
18%, mostly corresponding to an under prediction of magnitudes. The various models de-
viate from this average by about ±3:0%. The table shows the RSM and k–�h models have
a similar velocity accuracy to the mixing length. The poor k–�h model performance is not
remedied by the Yap term or Nishimura et al. modi�cation. Therefore, these results and those
for its non-linear counterpart will not be further considered. The key Table I observation
is that for the present complex �ow, inclusion of non-linear terms or RSM use has overall
not helped velocity predictions. Also, the LES predictions have better velocity accuracy than
the RSM.
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Table I. Summary of percentage errors.

Model ErrorU ErrorTi′

mll 21 —
k–lh 18 −53 (−56)
nl1–k–lh 17 −52 (−52)
k–ll 19 −47 (−50)
nl1–k–ll 19 −45 (−46)
k–�h 20 —
k–�=k–ll 15 −34 (−34)
nl1–k–�=k–ll 17 −33 (−33)
nl1–k–�=nl1–k–ll 16 −33 (−33)
nl2–k–�h 17 −30 (−30)
nl3–k–�h 15 −39 (−39)
RSM 20 −25 (−25)
LES 17 —

Figure 7. Plots of measured against predicted intensities for pro�les 1–6.

Figure 7, shows the equivalent plot to Figure 6 (ignoring the ml and k–�h models) for T ′
i .

The key point to note is that intensities, like velocities, are generally under-predicted (the
k–�h model in fact will badly over-predict intensities).
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Percentage total intensity, T ′
i , errors for all models are summarized on the right-hand

side column of Table I. The minus signs re�ect an under-prediction. The terms in paren-
thesis represent average Ti (i.e. true turbulence intensities containing just the stochastic
turbulent component) error values. Generally, non-linear models appear to give Ti improve-
ments. This is to be expected. Observation of the simple Appendix B channel �ow results
(in essence much of Figure 1 geometry consists of a series of channels) show inclusion of
the non-linear terms increases the streamwise normal Reynolds stress. However, considering
its satisfactory performance in validation tests, the nl3 model performance for the Figure 1
geometry is surprisingly poor. This might be because it is used in a high Reynolds number
form.
Figure 8, gives raw velocity pro�le data for the six Figure 3 pro�les. The symbols represent

measurements and the lines nl2–k–�h results. Figure 9 is a repeat of Figure 8 but this time
for turbulence intensity data. The key point to note is that changing to the explicit algebraic
stress model has not produced any dramatic performance gains. Although improved, turbulence
intensity errors are still signi�cant.
The k–lh linear and nl1 based models have virtually identical convergence rates. However,

the nl1–k–ll model is at least 10 times more expensive than its linear counterpart. For the
nl1 zonal models, with linear wall modelling there is a cost increase factor of at least 2.5.
Totally non-linear nl1 zonal modelling appears to be over 5 times more expensive. Bear-
ing all this in mind, any accuracy improvements seem rather small. Of note, Apsley and
Leschziner [39] apply the nl1 approximation (in a k–� framework) to some relatively simple
�ow geometries. To gain convergence, drastically, it was found necessary to omit the Oldroyd

derivative (
◦
S ij=0). Here convergence is secured by smoothing, clipping and use of relatively

small under-relaxation parameters and time-steps. The latter gives Courant numbers of less
than 0.001 and strong diagonal dominance. However, even with the listed stability measures,
average non-linear model convergence errors below 0.75% are di�cult to achieve. As shown
in Reference [7], such levels will give satisfactory unsteadiness amplitudes and mean pro�le
predictions but signi�cant unsteadiness frequency errors (not of direct interest in the present
work). Rokni and Sunden [40] improve Speziale’s non-linear approximation convergence by
utilizing the damping functions of Abe et al. [41]. Therefore, use of these functions might
seem worth future exploration. The current results do suggest introduction of the Wolfshtein
damping function detracts signi�cantly from convergence.
Replacement of the nl1 relationship with the explicit algebraic stress non-linear approxima-

tion of Abid et al. [10] shows evidence of improved convergence and smoothing is no-longer
needed. However, nl2 predictions for other geometries have shown serious stability problems.
For the cubic model of Craft et al. [17] (nl3) Reynolds stress clipping and smoothing are
not needed. Even so convergence is di�cult to secure. Quite elaborate measures involving
the staged introduction of non-linear terms is required.
A more fruitful avenue of exploration for complex relatively low Reynolds number electron-

ics geometries might be the use of zonal LES (see Reference [42]), where near walls, RANS
models are applied and away from them LES implemented. Following Kosovic [20] the nl1
relationship could be used as the basis for a k–l subgrid scale model. Such approaches possi-
bly have greater longer-term accuracy bene�ts. However, for �ows of especially low Reynolds
number pure LES might be feasible. It is important to note that the Crank–Nicholson and
second-order central di�erence based LES simulations of Chung et al. [38] show, unlike with
the non-linear models, excellent convergence properties.
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Figure 8. Comparison of velocity predictions with measurements for the k–�h and nl2–k–�h
(◦, LDA measurements; - - - -, k–�h; —-, nl2–k–�h).
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Figure 9. Comparison of intensity predictions with measurements for the k–�h and nl2–k–�h
(◦, LDA measurements; - - - -, k–�h; —-, nl2–k–�h).
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4. CONCLUSIONS

For relatively simple geometries and steady �ows non-linear models have seen signi�cant test-
ing showing some success. However, they have seen less use in highly complex geometries
and unsteady �ows such as the present. For such systems the additional terms introduced in
the non-linear eddy viscosity relationship used here does not, generally, relative to compu-
tational cost, appear that bene�cial. Also, for the present cases, the extra terms, relative to
linear models, tend to damp unsteadiness. Although further testing is required, results sug-
gest the simpler, more constrained models, at present, are perhaps (considering computational
costs=non-linear model convergence di�culties) a sensible choice for many complex geometry
applications. For higher accuracies, zonal models with more stable non-linear eddy viscosity
and damping function relationships might be a sensible area of study. However, a more fruit-
ful avenue of exploration for complex, relatively low Reynolds number electronics geometries
might, be the use of non-linear zonal LES. Work in this area is currently being carried out
using a classical non-linear relationship similar to Speziale’s as a subgrid scale model. Also,
the cubic model based zonal LES approach of Batten et al. [43] is being applied to com-
plex geometry �ows. Of the non-linear models the explicit algebraic stress showed greatest
potential.

APPENDIX A

The forms of Ã; Ẽ and �∗t used in Equation (3) are given below.
(1) Speziale non-linear model:

Ẽ=4CEC�
�∗t
�

〈k〉
〈�〉

( ◦
Sij − 1

3
◦
Skk�ij

)
(A1)

In Equation (A1),
◦
Sij, is the Oldroyd derivative is given by

◦
Sij =

@Sij
@t
+ 〈Uk〉@Sij@xk

− @〈Ui〉
@xk

Skj − @〈Uj〉
@xk

Ski (A2)

Ã=4CDC� (A3)

�∗t = �t (A4)

where C�=0:09; CD=CE =1:68.
(2) Craft et al. cubic model:

Ẽ =4c2
�∗t
�

〈k〉
〈�〉 (WikSkj +WjkSki) + 4c3

�∗t
�

〈k〉
〈�〉

(
WikWjk − 1

3
WlkWlk�ij

)

+8c4
�∗t
�

〈k〉2
〈�〉2 (SkiWlj + SkjWli)Skl + 8c5

�∗t
�

〈k〉2
〈�〉2 SijSklSkl

+8c6
�∗t
�

〈k〉2
〈�〉2 SijWklWkl (A5)
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Ã = 4c1

�∗t = �t
(A6)

where Sij= 1
2(@Ui=@xj + @Uj=@xi) is the mean strain rate tensor and Wij=

1
2(@Ui=@xj − @Uj=@xi)

is the mean vorticity tensor. The coe�cients c1; c2; c3; c4; c5; c6 are 0:1;−0:1;−0:26; 10c2� ; 5c2�
and −5c2� , respectively, where

c�=
0:3

1 + 0:35{max(S̃ ; W̃ )}1:5 [1− exp(−0:36 exp(0:75max(S̃ ; W̃ )))] (A7)

with S̃= 〈k〉=〈�〉√2SijSij and W̃ = 〈k〉=〈�〉√2WijWij.
(3) Explicit algebraic stress model:

Ẽ =2�∗t

[
−1
3
Skk�ij + 
3

〈k〉
〈�〉 (SikWkj + SjkWki)

]
(A8)

Ã=−2
4 (A9)

�∗t = �
3(1 + �2)
1

3 + �2 + 6�2�2 + 6�2
〈k〉2
〈�〉 (A10)

where

�= 
2(SijSij)1=2
〈k〉
〈�〉 ; �= 
3(WijWij)1=2

〈k〉
〈�〉

The constants 
1; 
2; 
3; 
4 are 0:1137; 0:0876; 0:1869; 0:1752, respectively [10].

APPENDIX B

In this appendix non-linear model validation cases are presented. First, fully developed channel
�ow with Re� 32 000 (the characteristic length scale in Re is based on the channel half-width
h=2=0:03175m) is considered. For this case just results for the low Reynolds number k–ll and
nl1–k–ll turbulence models are shown with the Van Driest damping function. Results for the
explicit algebraic stress (nl2) and cubic (nl3) models show a similar level of performance. To
ensure that at �rst o�-wall grid nodes y+¡1; 65 non-uniform, cross channel, y, grid spacings
are required. Figures B1(a)–B1(c) compare predictions and measurements for the variation
of normalized u′u′; v′v′ and w′w′ against y=h, respectively. Measurements, by Laufer [35],
are represented using symbols. The k–ll and nl1–k–ll predictions are given by the dashed and
full lines, respectively. As can be seen, the non-linear model gives improved agreement with
the measurements.
It is well known that when the channel geometry is no longer assumed two dimensional

the e�ects of anisotropy on �ow structure can also be striking, with the generation of Prandtl
motions of the second kind. Non-linear eddy viscosity models are capable of modelling these
motions. Predictions of these, periodic in the x co-ordinate, for Re=2400, with a 33× 33 (y; z)
grid, re�ned at solid surfaces, using the nl1–k–ll model, are shown in Figure B2. Again the
standard Van Driest damping function is used. Considering the DNS data Mompean et al. [27]
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Figure B1. Comparisons of predictions and measurements for the variation
of the normalized correlations u′u′; v′v′ and w′w′ against y=h, respectively

(◦, experiment data; —-, non-linear model; - - - - -, linear model).

Figure B2. Predicted �ow structure for a three-dimensional channel �ow.
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Table B1. Predicted reattachment lengths for backwards facing step �ow.

Model L=ho

k–lh 6.1
k–�h 6.0
nl1–k–lh 6.4
nl1–k–�h 6.4
nl2–k–�h 7.5
nl3–k–�l 6.7
Exp. 7.0

shows that to gain the correct corner damping behaviour, the product of the two damping
functions associated with the orthogonal walls can be taken. Therefore, the mixing length
takes the following form:

〈l�〉=�y(1− e−〈z+〉=26)(1− e−〈y+〉=26) (B1)

Without this approach, the y–z plane recirculations cannot be reproduced (It should be noted
that Mompean et al., do not use the standard Van Driest constants in their wall damping
expression). However, there seems little use in adopting such a tuned approach and the use
of standard constants is preferred here. The results give further con�dence that the extensive
non-linear terms have been correctly coded. The nl2 and nl3 models are also found to correctly
predict the secondary motions.
The �ow over a backward facing step is now considered. The predictive accuracy for

the reattachment length, L, can be signi�cantly improved with non-linear models. Table B1
shows predicted dimensionless reattachment lengths (L=ho, where ho is the step height) for the
k–lh, k–�h, nl1–k–lh, nl1–k–�h, nl2–k–�h and nl3–k–�l models. These are for Re=132 000. The
experimental L=ho value is 7 (see Reference [36]). The improvement in predictive accuracy
for anisotropy resolving techniques, which is due to better modelling of the Reynolds stresses,
is clear.
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